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In this paper, we present a method for speckle pattern design using deep learning. The speckle patterns
possess unique features after experiencing convolutions in Speckle-Net, our well-designed framework for
speckle pattern generation. We then apply our method to the computational ghost imaging system. The
standard deep learning-assisted ghost imaging methods use the network to recognize the reconstructed
objects or imaging algorithms. In contrast, this innovative application optimizes the illuminating speckle
patterns via Speckle-Net with specific sampling rates. Our method, therefore, outperforms the other
techniques for ghost imaging, particularly its ability to retrieve high-quality images with extremely low
sampling rates. It opens a new route towards non-trivial speckle generation by referring to a standard loss
function on specified objectives with the modified deep neural network. It also has great potential in other
areas using speckle patterns such as dynamic speckle illumination microscopy, structured illumination
microscopy, x-ray imaging, photo-acoustic imaging, and optical lattices.
© 2021 Optical Society of America
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1. INTRODUCTION1

Typical speckle patterns are generated when light is scattered or2

diffused from the inhomogeneous rough media [1]. The statistics3

of the speckles depends on the incident light field [2]. In partic-4

ular, scattered laser speckle is known as the Rayleigh speckle5

since the amplitude of the scatted filed obey the Rayleigh statis-6

tics [3]. Speckle patterns can also be produced by sources such7

as x-rays [4], microwaves [5], and Terahertz radiation [6] be-8

sides visible light. The study of speckle patterns has been con-9

ducted in many scenarios such as waveguides [7], fibers [8], and10

nanowires [9]. The wide range of applications of the speckle11

patterns include spectroscopy [10], microscopy [11, 12], interfer-12

ometry [13], metrology techniques [14, 15], and correlated disor-13

der in optical lattices [16–18]. In these applications, the speckle14

patterns act as efficient random carriers of encoding the spa-15

tial information within the systems and later on being decoded.16

Therefore, to retain well-performed data carriers, manipulation17

of its inherent statistical properties is highly demanding from18

the perspective of efficiency, accuracy, and robustness.19

Speckle pattern also plays an essential role in ghost imag-20

ing [19, 20]. Standard Rayleigh speckles have been used for21

ghost imaging for decades [21, 22]. Later on, the spatial light22

modulator (SLM) and the digital micromirror device (DMD) are23

used as convenient and powerful tools for speckle pattern forma-24

tion. Various synthesized speckle patterns [23–26] are generated25

by customizing and regulating amplitude and phase of the elec-26

tromagnetic field or directly designing and adjusting the power27

spectrum of the speckle patterns. Recently, efforts have been28

made to generate orthonormalized [27], Walsh-Hadamard [28–29

30], and colored noise [31] speckle patterns for sub-Nyquist30

sampling imaging. To date, the synthesized speckle patterns31

are typically generated from customizing the power spectrum,32

vortex, amplitude of either the intensity or field distribution to33

finally justify their spatial correlations. Therefore, tremendous34

work must be done, from complicated theoretical calculations35

and many experimental attempts to decide the parameters dis-36
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cussed above. Besides, the speckle patterns used for sub-Nyquist37

imaging are not optimal for any specific sampling rate (SR).38

In this work, we introduce a universally applicable speckle39

pattern generating method based on deep learning (DL), namely40

Speckle-Net. We design a specific deep neural network (DNN)41

customized to speckle pattern generation by utilizing the con-42

volution concept in the convolutional neural network (CNN).43

The kernels in CNN are used to adjust the second-order cor-44

relation of the speckle patterns. The Speckle-Net training is a45

pre-processing technique only based on the optical system and46

the loss function. During the training process, Speckle-Net con-47

tinuously improves the kernel values in each training epoch48

until they reach the optimum values referring to the loss func-49

tion. We then implement this technique on the ghost imaging50

system, in which the speckle patterns are optimized for any51

given SR. The optimized speckle pattern can then be applied52

to any computational ghost imaging (CGI) system, resulting53

high-quality images even at extremely low SRs. Speckle-Net can54

also be applied to other illumination systems that require opti-55

mizing the speckle patterns of illumination by selecting suitable56

evaluators as the loss function in a one-time training process.57

2. PRINCIPLES OF SPECKLE-NET58

A. Correlation Modulation by Kernels59

Kernel, a popular concept in DL, is usually applied in CNN60

containing each convolutional layer. It functions as a matrix that61

makes convolution on speckle patterns to minimize the size of62

patterns and localizes the feature within areas in the pattern. The63

output patterns are mainly modulated by kernels convoluting64

the initial pattern. In our strategy, multiple unique kernels are65

designed to act on initial speckle patterns Pi(x, y) in each layer66

of DL, after which multiple different speckle patterns P′
i (x, y)67

(i = 1, · · · , N) are generated, as is shown in Fig. 1. Speckle68

patterns after multiple convolution transformations ought to be69

distinct from each other, and their spatial intensity fluctuation70

correlation distribution will be modulated by multiple kernels71

in multiple layers with the instruction of standard loss function72

in DL.73

The principle of the second order correlation modulation is
briefly explained here. We use in total N kernels Ci(m, n), where
m, n are coordinates of the kernel. The speckle pattern P after
convolution can be expressed as P′

i (x, y) = ∑m,n Ci(m, n)P(x +
m, y + n), where x, y are coordinates in the pattern. The average
value of the resulted patterns P′

i (x, y) is

P̄′(x, y) =
1
N

N

∑
i=1

∑
m,n

Ci(m, n)P(x + m, y + n)

= ∑
m,n

C̄(m, n)P(x + m, y + n). (1)

We then have

∆P′
i (x, y) ≡ P′

i (x, y)− P̄′(x, y)

= ∑
m,n

(Ci(m, n)− C̄(m, n))− P(x + m, y + n)

= ∑
m,n

∆Ci(m, n)P(x + m, y + n), (2)

Fig. 1. One layer convolution in our featured neural network.
Multiple kernels are attached on a single speckle pattern. P is
the initial or convoluted pattern from the former layer, and P′s
are the output patterns from the current layer. Each subscript
indicates the correspondence between convoluted speckle
patterns and kernels.

and the correlation function of the resulted patterns is

Γ(2)(∆x, ∆y) = ⟨∆P′
i (x1, y1)∆P′

i (x2, y2)⟩

=

〈
[ ∑
m1,n1

∆Ci(m1, n1)P(x1 + m1, y1 + n1)]

× [ ∑
m2,n2

∆Ci(m2, n2)P(x2 + m2, y2 + n2)]

〉
= ∑

m1,2,n1,2

⟨∆C(m1, n1)∆C(m2, n2)⟩

× P(x1 + m1, y1 + n1)P(x2 + m2, y2 + n2)

= ∑
m1,2,n1,2

Γ(2)
C (∆m, ∆n)

× P(x1 + m1, y1 + n1)P(x2 + m2, y2 + n2), (3)

where ∆x ≡ x1 − x2, ∆y ≡ y1 − y2. It is clear shown in Eq. (3)74

that the correlation function of the generated speckle patterns75

depends on the correlation function of the kernel Γ(2)
C (∆m, ∆n)76

and the initial pattern. Thus, the process of adjustment on each77

kernel in DL is aimed at producing desired correlations with78

respect to the initial speckle pattern, which can be seen as weight79

parameters. The convolution process of a single pattern can be80

understood as a re-distribution of the spatial correlation from81

different kernels.82

B. Structure of the Speckle-Net83

Speckle-Net consists of multi-branch and simplified layers, as84

shown in Fig. 2 (a)1. Single pattern padded with reflection of85

their boundaries plays the role of input. To provide the flexibility86

of correlation adjustment, convolution layers with a relatively87

large kernel size of 10 × 10, a Rectified Linear Unit (ReLU) [32],88

and a Batch Normalization Layer (BNL) [33], are combined into89

a series of processes in each layer. The layers share similarities90

1The raw codes of Speckle-Net can be found on https://github.com/
XJTU-TAMU-CGI/PatternDL

https://github.com/XJTU-TAMU-CGI/PatternDL
https://github.com/XJTU-TAMU-CGI/PatternDL
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Fig. 2. (a) Diagram of Speckle-Net. A multi-branch structure with two convolution layers within each branch is used in the model,
in which 10 × 10-sized kernels are adopted. The subscripts j and i in Cji denote the j-th layer and i-th kernel in each layer correspond-
ing to the deep-learned speckle patterns. A loss function feedback is applied at the end of each branch to modify the parameters
in kernels. The deep-learned speckle patterns generate the CGI results in training at each training epoch. (b) Schematic of the ex-
perimental setup. The deep-learned speckle patterns P′

i are applied to the DMD for the CGI measurement. The laser illuminated
patterns are projected onto the object (O). Light passing through object is collected by a bucket detector (BD).

with Branch Convolutional Neural Network [34], and the out-91

puts of all layers are padded again by boundary reflections to92

maintain the size of their origin. The ReLU could improve the93

sensitivity to the activation sum input, and BNL is implied to94

reduce internal covariate shift.95

Speckle-Net has higher effectiveness and efficiency than con-96

ventional CNN, has no overfitting concerns, and is adaptable to97

other systems. Firstly, the multiple backward methods signifi-98

cantly improve the performance of the network. It is difficult99

to analyze and enhance the original pattern and aimed imaging100

systems from a single or a few intermediate layers. At the same101

time, too many layers have poor directional of amelioration [35],102

therefore losing the characteristics of the original pattern and103

sought imaging systems. Nevertheless, our multi-branches neu-104

ral network boosts the feedback gradient adjustment at each105

epoch from the loss function, avoiding the loss function of out-106

put patterns trapped in a local minimum. Every two layers’107

parameters in one branch are adjusted independently. Therefore,108

getting the optimum parameters in our model is more efficient109

and effective than single-branch CNN with multiple layers and110

single loss function feedback. Meanwhile, this Multi-branches111

learning process has great performance because various training112

complexities are required for different sampling rates β. For ex-113

ample, when small β is adopted, fewer patterns lead to fewer re-114

quired parameters and less time for training. Therefore, only two115

rounds of training are necessary to get desired speckle patterns.116

Otherwise, more branches can be used for a larger sampling rate,117

as shown in Supplement 1, section 1. Thus, this Multi-branches118

Speckle-Net enables us to select the most efficient number of119

training branches according to looking at the loss functions of120

previous results. If the loss in two (or more, to ensure) neigh-121

boring training branches go closely to the same minimum, we122

can conclude that the speckle patterns reach to the global opti-123

mum. Secondly, we abandon the fully connected (FC) layers and124

dropout layers. FC layers in this structure demand large RAM2,125

2For instance, if the image size of patterns is 112 × 112 and sampling rate
β = 0.5%, the number of patterns is 62. Then the size of parameters in the FC layer
is around 9,000 TB, which is unrealistic for training.

and is useless in that the convolution parts aim to adjust the126

correlation of patterns rather than get the CGI results. On the127

other hand, the dropout layer is functioned to avoid over-fitting128

in convolutional layers. However, in a deep-learned speckle129

pattern scheme, the optimum patterns are our ultimate goal130

which remains intact for various training and testing images.131

A constant input image means that over-fitting does not exist132

in our model. Therefore, the epoch number can be determined133

based on the convergence of the loss function in each branch, as134

shown in Supplement 1, section 1. Moreover, the loss function135

in our model can be adjusted according to the feature of the136

physical process, and the CGI algorithm can be substituted by137

other physical processes as well. In imaging and spectroscopic138

systems, the mean square error (MSE), contrast-to-noise ratio,139

correlation-coefficient, etc., can be applied to the loss function140

independently or in combination to achieve good visibility, high141

contrast, and optimized similarities.142

3. IMPLEMENTATION: COMPUTATIONAL GHOST IMAG-143

ING144

Ghost imaging [19, 20, 36], a single pixel imaging technique, re-145

constructs the object through second-order correlation between146

reference and object light paths. CGI [22, 37] substitutes the refer-147

ence path by preparing speckles in advance. Therefore, one only148

needs to record the intensity of object light path and correlate149

them with speckles in sequence.150

One of the main disadvantages of CGI is the large sampling151

rate, and therefore long sampling time. CGI have to project a152

large number of speckle patterns on objects and then collect light153

intensity sequentially for the ensemble correlation. When the154

object pixel size is large, the required number of speckle pat-155

terns is tremendous. Many ameliorated techniques have been156

proposed to minimize the sampling rate, such as orthonormal-157

ization method [27, 31], Fourier and sequency Walsh-Hadamard158

speckles [28, 29, 38], and compressive sensing [39, 40].159

DL-based CGI technique has also shown sub-Nyquist imag-160

ing ability. It can retrieve images at a few percentage sampling161
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rates, which is much lower than other techniques [41–45]. Nev-162

ertheless, almost every work uses post-processing techniques,163

and their adaptive objects are limited to categories from train-164

ing groups. Therefore, they don’t work or work much worse165

when objects are outside the training group. In general, these166

works focus on using DL to suppress the noise fluctuation via167

matrix restoration or array amelioration algorithm, which does168

not touch the core concept of ghost imaging. CGI is the linear169

aggregation of correlation from each pixel where light passes170

through. To solve the problem fundamentally and universally,171

we should be direct to the correlation.172

we conceive that applying DL technique will optimize the173

cross- and auto-correlation of the speckles. Mean Squared Error174

(MSE) is one of the most frequently appeared evaluators in DL175

to evaluate picture quality. We therefore choose MSE here as176

the training loss functions for each branch, to compare the CGI177

results and their ground-truths. The MSE is defined as178

MSE =
1

Npixel

Npixel

∑
i=1

[
Gi − Xi
⟨G(o)⟩

]2 (4)

Here, X is the reference matrix calculated by179

Xi =

{
⟨G(o)⟩ , Transmission = 1
⟨G(b)⟩ , Transmission = 0

(5)

G represents pixels in the correlation results, G(o) is where the180

light ought to be transmitted, i.e., the object area, while G(b) is181

where the light ought to be blocked, i.e., the background area.182

Npixel is corresponded to the total pixel number in the speckle183

patterns (Npixel = 112 × 112 in our experiment).184

This way of correlation adjustment to improve CGI is not185

limited by training database categories, one-time, and can let186

the sampling rate reach to 0.5%. To demonstrate the ability of187

Speckle-Net, only the MNIST dataset is adopted as training and188

part of testing images. A total of 60,000 handwritten digits re-189

sized to 112 × 112 pixels are used. The optimizer for training190

process is Stochastic Gradient Descent with Momentum Opti-191

mizer (SGDMO) [46]. The momentum of optimizer was set to192

0.9 as suggested and weights decay factor was 10−3 to avoid193

exploding gradient. After network predicts manipulation on194

speckles, we utilize training images and patterns to obtain tem-195

porary CGIs. The loss function is the MSE between temporary196

CGIs and original training images, a general loss function for DL197

problem. Losses of some training images are tremendous, and198

we adopted the mean reduction of each batch as losses. Then199

the backwards adjust parameters in the network via manipu-200

lation patterns. Generally speaking, the network only relates201

directly to the speckle patterns instead of training images as202

in the traditional CNN. As mentioned before, the over-fitting203

effect is not obvious in our network. Therefore, the network was204

trained for 200 epochs before which the loss stopped declining.205

This program is implemented via Pytorch 1.7.1 and CUDA 11.0206

on Python 3.8.5, and we imply GPU-chip NVIDIA GTX1050 for207

computation acceleration.208

The convoluted speckle patterns can then be directly used209

in the CGI experiment. A typical CGI experiment setup is pre-210

sented in Fig. 2(b). The convoluted speckle patterns from three-211

step training output are loaded onto digital micromirror device212

(DMD). With the illumination from laser, the speckle patterns are213

projected to objects, and light passing through object is collected214

by the bucket detector (BD). The images can then be retrieved215

using the standard CGI algorithm.216

4. CHARACTERISTICS OF THE DEEP-LEARNED217

SPECKLE PATTERNS218

Fig. 3. Left column: Typical speckle patterns experienc-
ing three rounds DNN training with sampling rate β =
0.5%, 1%, 2%, and 5%; Middle column: The Fourier spectra
of corresponding convoluted speckle patterns; Right column:
The spatial intensity fluctuation correlation distributions of
corresponding speckle patterns.

We choose four different sampling ratio β (0.5%, 1%, 2%,219

and 5%) for the Speckle-Net training. β is defined as β =220

Npattern/Npixel, where Npattern is the total number of speckle221

patterns. When β is given, the number of kernels Nk in each222

layer is settled, Nk = βNpixel = Npattern. A group of output223

patterns is given after each round of training with each β. A224

typical pink noise speckle pattern [47] is used as the initial pat-225

tern. Since the pink noise speckle pattern favors lower spatial226

frequency components, therefore can in principle make the train-227

ing process converge faster especially in small β cases. Three228

rounds are enough to generate the optimized patterns from the229

initial pattern via Speckle-Net for all the βs used in this work,230

and two rounds are sufficient for smaller βs (see supplement231

1 for detail). In principle, any speckle pattern can be used as232

the initial input, with possibly extra training (see supplement 1,233

section 3 for detail).234

In Fig. 3, we show the three-round convoluted patterns for235

various β in the first column. The Fourier spectrum distribu-236

tion and spatial intensity fluctuation correlation distribution237

Γ(2)(x, y) of the patterns are also presented in the second col-238

umn and the third column, correspondingly. From Fig. 3 we can239

see that the grain size of the speckle pattern gradually decreases240

when β increases. This is also reflected in the Fourier spectrum241

distribution, i.e., it concentrates on low spatial frequency when242

β is small, and expands to higher spatial frequencies when β243

increases. Nevertheless, we also notice there are some high fre-244

quency components in all the β cases, which is also essential245

for the CGI process. Now if we check the spatial correlation246

of the deep-learned speckle patterns, we notice that the width247

of the correlation function is broad when β = 0.5%, and ap-248
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proaches a delta function when β = 5%. On the other hand,249

the background is smoothly distributed, irrespective of β. This250

is different than traditional speckle patterns when β is small.251

The latter case typically has a significant fluctuation and ran-252

dom distribution in the background due to the lack of ensemble253

average. Overall, for various β, the deep-learned speckle pat-254

terns always give optimized correlation function which peaked255

at auto-correlation with certain bandwidth and smoothly dis-256

tributed cross-correlation background.257

5. EXPERIMENTAL RESULTS258

A. Imaging results with different sampling rates259

To testify the effectiveness of the deep-learned speckle patterns260

in CGI system, we performed a serials of measurements using261

the experimental setup shown in left part of Fig. 2. The DMD is262

illuminated by a CW laser, and the deep-learned speckle patterns263

are sequentially loaded on the DMD then projected to illuminate264

the object. All objects are 112 × 112 pixels in size and placed at265

the imaging plane in front of the BD. Light passing through the266

object is collected by a BD, the recorded intensities are then used267

to make second-order correlations with corresponding patterns.268

After correlation ensemble controlled by sampling rate β, the269

object is reconstructed. In the experiment, we used our deep-270

learned speckle patterns with sampling rates of 0.5%, 1%, 2%,271

and 5%. We adopt four categories, in total 16 different objects272

(simple digits and letters, English letters, Chinese characters,273

and pictures) for reconstruction. In all the 16 objects, only digits274

’4’ and ’8’ are from the pattern training dataset. These objects275

have different sizes, orientations, and complexities, in order276

to demonstrate the universal adaptability of the deep-learned277

patterns.278

The main results are shown in Fig. 4. Simple objects such as279

the simple shape ‘three lines’, Greek letter ‘π’, digits ‘4’ and ‘8’,280

and Chinese character ‘huo’, can be reconstructed at the SR of281

only 0.5%, i.e., only 62 patterns are used for the imaging process.282

At SR of 1%, the basic profile can be reconstructed for most of283

the objects already, and become much more clearer when the SR284

is 2%. At the SR of 5%, all objects can be clearly retrieved. We285

note here that, when the sampling rate is low, the deep-learned286

patterns possess higher cross-auto correlation ratio, as shown in287

Fig. 3. The images generally show higher signal to background288

ratio but lower resolution. When the SR is high, such as 5%,289

the images have much higher resolution. From Fig. 4 we can290

conclude that all the objects with different complexity can be291

reconstructed with high visibility and low noise fluctuation in292

the background. This boost the deep-learned speckle patterns’293

applicability in extremely low sampling ranges, which might be294

useful in moving object capture and dynamic imaging systems.295

B. Imaging results under different noise conditions296

Another advantage of the deep-learned speckle pattern is that,297

the optimized auto- and cross-correlation enables its noise-298

robust feature meanwhile possesses sufficient spatial resolution.299

To demonstrate the ability of imaging under noisy interference300

of the deep-learned patterns, we perform a series of measure-301

ments of four objects under different noise levels. We choose302

the four objects from our four catalogs: Greek letter ‘π’, letters303

‘CGI’, Chinese character ‘yan’, and picture ‘leaf’. Different noise304

levels are represented by different SNRs. The SNR in logarithmic305

decibel scale is defined as306

SNR = 10 log
Ps

Pb
, (6)

where Ps is the average intensity in each signal pixel and Pb is307

the average intensity in the noise background. Here we choose308

three different SNRs: 8.8dB, 6.4dB, and 3.1dB.309

The results are shown in Fig. 5. It is clearly seen that at310

8.8dB, all the images can be retrieved at all different SRs. When311

the SNR is 6.4dB, some of the images start to show noisy back-312

ground. Nevertheless, all the objects can still been clearly iden-313

tified. When the SNR is 3.1dB, which can be considered very314

noisy, most of the objects can still be identified. We also notice315

that, speckle patterns with lower SR are more robust to noise316

interference. Take the Greek letter ’π’ for example, although it317

can be clearly imaged at 3.1dB when the SR is 5%, there exists318

obvious background noise in the resulted image. At 2% SR, the319

background noise starts to degrade. When the SR is at 1% or320

0.5%, the background is almost smooth and we see nearly no321

difference between results at the three noise levels.322

The noise-robust feature is resulted from the optimized cross-323

auto correlation ratio for each SR. At the extremely low SR such324

as 1% and 0.5%, the cross correlation is much emphasized to325

enhance the signal to noise ratio, and suppress the fluctuations326

in the correlation due to limited number of sampling. Therefore,327

the deep-learned speckle patterns are feasible to apply in noisy328

environments.329

6. CONCLUSION AND DISCUSSION330

In summary, we propose a speckle pattern generation scheme,331

Speckle-Net, by using DL algorithms and concepts to obtain332

the desired feature. We then chose the standard CGI algorithm333

as our objective for loss function, and applied this method to334

generate speckle patterns for CGI. We experimentally demon-335

strate that the deep-learned speckle pattern can be used for the336

standard CGI measurement, enhance the imaging efficiency, and337

robust to noise. The method is unique and superior to the tra-338

ditional CGI and deep-learning-based CGI focusing in image339

amelioration or imaging algorithms. Firstly, this featured multi-340

branch Speckle-Net provides with flexibility in finding global341

optimal solution and time-consumption in training. Secondly,342

since the learning process only focuses the speckle patterns, it343

can be used for other speckle illumination systems by changing344

the objective in loss function. Thirdly, even though the network345

is trained only using the MNIST digit dataset, the resulting pat-346

tern can retrieve images for simple letters with an extremely low347

sampling rate (0.5%) and can imaging complicated objects with348

only a 5% sampling rate. Furthermore, deep-learned speckle349

pattern based CGI system is insensitive to noise interference.350

Although a particular example, i.e., the CGI is demonstrated351

in this work, in the long term, we believe the pioneering work352

boosts a closer connection between DL and speckle pattern gen-353

eration, which will pave the way for broader and practical ex-354

ploitation of ghost imaging and other applications. In addition,355

other structures such as U-net [48], recurrent neural network356

(RNN) [49], transformer [50, 51], etc., can be similarly explored357

and modified to generate aimed speckle patterns. For example,358

the time-dependent RNN and transformer can be modified simi-359

larly as what we do on CNN to make other types of Speckle-Net360

which can fabricate time-dependent speckle patterns accord-361

ing to the instant feedback and demand of systems during the362

measurement. Specifically, the n-th illumination pattern can363

be generated from patterns and results with n − 1 sampling364

number.365
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Fig. 4. Experimental results of CGI with simple symbols, words, Chinese characters, and pictures by three rounds deep-learned
speckle patterns. From top to bottom: original objects, CGI results with β = 5%, 2%, 1%, and 0.5%, respectively.

Fig. 5. Experimental results of CGI using Deep-learned speckles with different noise levels labelled in the left column. (a) CGI
results with β = 5%, (b) CGI results with β = 2%, (c) CGI results with β = 1%, and (d) CGI results with β = 0.5%.
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